
EtherLink (3C501) Adapter
Technical Reference

Copyright © 3Com Corporation, 1988. All rights reserved.
5400 Bay'front Plaza, Santa Clara, CA 95052

Manual Part No. 6405-00
Ori~linally published November 26, 1988. Printed in the U.S.A.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Contents

Introduction 4
Architecture 5
System Interface 6

EtherLink Adapter Controller Register Map 7
Transmit Command Register 7
Transmit Status Register 8
Receive Command Register 8
Receive Status Register 10
Auxiliary Command Register 10
Auxiliary Status Register 12

EtherLink Adapter Programming 13
To Transmit a Packet 13
To Receive a Packet 13
Transmit and Receive Code Example 14

Setting the Jumpers 18
Ethernet Interface 20
Known Bugs Found on Eady Production Boards 21

EtherLink Adapter Technical Reference
11/26/88

Page 2

I

List of Figures
Table

Table 1

Table 2

Table 3

Title Page

Discard/EOF Condition Truth Table 9

Jumper Function and Factory Setting on ASSY 0345 19

Jumper Function and Factory Settings on ASSY 34-0780 20

EtherLink Adapter Technical Reference
11/26/88

Page 3

Introduction
The EtherLink adapter is a low-cost Ethemet controller/transceiver for IBM Personal Computers which
conforms to the Ethemet Specification, Version 1.0, 30 September 1980, as published by DEC, Intel
and Xerox. With one minor exception, it implements levels one and two of the Open Systems
Interconnect Model of the International Standards Organization:

Level One Functions, Physical Layer:

• Coax/station electrical isolation.

• Bit transmission/reception.

• CarrEtherLink adapter sense.

• Transmit collision detection.

• Encoding/decoding.

• Preamble generation/removal

Levd Two Functions, Data Link Layer:

• Frame check sequence generation/checking.

• Carrier deference.

• Transmit collision enforcement.

• Collision fragment (runt) filtering.

• Bad packet filtering.

• Address recognition.

The controller on the EtherLink adapter incorporates a VLSI Ethernet Data Link Controller, the See
8001 or EDLC, and a single, 2Kbyte packet buffer designed to operate with the 8237A DMA
controller found on the IBM System Board. It also has provisions for external loopback and can use
one of the interrupt channels of the 8259A interrupt controller on the system board. In addition to a
conventional Ethernet controller, the EtherLink adapter contains an Ethernet transceiver providing
complete Level 1 and Level 2 functionality on one printed circuit card.

EtherLink Adapter Technical Reference
11/26/88

Page 4

I

Two versions of the EtherLink adapter controller exist. The two versions may be differentiated by
their respective assembly numbers. These numbers are printed on the cards. One version has ASSY
0345- printed along the connector edge of the card. The other version has ASSY 34-0780- printed

- along the edge opposite the connector. These versions have minor differences which are noted where
they apply.

Architecture
The EtherLink adapter has a single 2Kbyte packet buffer (large enough for the longest Ethemet packet)
shared between transmit and receive. Once a packet is transferred to the buffer for transmission and a
transmit initiated, the software must intervene only in case of a collision. To receive a packet, software
selects one of several address recognition modes; when a packet of interest is detected, the controller
places it in the packet buffer. When enabled for multicast recognition, address screening of multicast
packets must be performed by the system software.

The software interface to the EtherLink adapter is a block of sixteen registers in the I/O space of the
8088. These registers are used to write commands, read status information, and access packet data.
In contrast with IBM's practice, the EtherLink adapter's base address is jumper settable (32 values on
ASSY 0345 and 64 values on ASSY 34-0780). The EtherLink adapter has a 4Kbyte ROM for program
storage. The base address of the ROM in memory space is also jumper settable (32 values on ASSY
0345 and 256 on ASSY 34-0780).

Access to the packet buffer switches between the system bus and the network under software control.
Network access can be receive, transmit with automatic rollover to receive, or loopback.

One of the I/O registers provides a one byte window on the packet buffer. Another register, GP, the
general purpose buffer pointer, holds the address of the byte visible through the packet buffer
window. Reading and writing the window automatically increments GP permitting sequential access
to the packet buffer from the system bus.. Writing GP then reading or writing the window gives the
effect of random access.

The packet buffer can be loaded and unloaded using the 8237A DMA controller on the system board to
repetitively read or write the window. The EtherLink adapter can request DMA service, detect the end
of the transfer and interrupt when the DMA is done.

All interrupts go through the 8259A interrupt controller on the system board. Each type of EtherLink
adapter inten~pt is enabled independently of other types; however, the EtherLink adapter has only one
interrupt line to the system. This arrangement requires software to scan the EtherLink adapter status
registers to determine the cause of an interrupt. Consistent with IBM PC practice, both DMA service
request and interrupt request line drivers can be disabled.

EtherLink Adapter Technical Reference
11/26/88

Page 5

!

System Interface
The EtherLink adapter has two 11-bit buffer address pointers (registers), the General Purpose pointer,
GP, and the Receive Pointer, RP. RP is used as the buffer pointer while the controller receives
packets from the network. Software can read and reset RP. GP is used by the controller during
uansmit and by software to address the packet buffer when the buffer is available to the system bus.
Software can read and write GP. GP automatically increments when the packet buffer is read, either
by the system or while transmitting to the network. Loopback operation uses both GP and RP.

Transmit packets are end-aligned within the packet buffer. Software uses GP when f'flling the buffer.
Software must reload GP with the address of the first byte of the packet before initiating a
transmission.

Receive packets are front-aligned in the buffer. After the EtherLink adapter receives a packet, RP
contains the packet length in bytes. If the packet length exceeds the legal maximum, the first 2048
bytes will be saved in the buffer. After the 2048th byte, RP locks up preventing any buffer overwrite;
reading a packet length of 2048 (800 hex) from RP indicates a packet of at least 2048 bytes.

During loopback, the controller reads the end-aligned transmit packet from the buffer and writes the
received packet front-aligned in the buffer. A maximum length packet can be looped back. The
received packet may overwrite part of the transmitted packet. Loopback requires the EtherLink adapter
to be connected to an Ethemet by the onboard or external transceiver, or fitted with special BNC or
DA-15 loopback plugs by the user.

The EtherLink adapter's Ethemet station address is stored in a PROM, whose contents are accessible
through another one byte window register similar to the window register used to access the packet
buffer, available in locations zero thru five with station address byte zero at address zero. Bits 0-2 of
GP are used to address the PROM. However, unlike access to the packet buffer, reading the station
address does NOT auto-increment GP; software must explicitly increment it.

The EtherLink adapter provides two sets of registers for the Ethemet station address. One set is read
only (the PROM); the other set is write only. Software must program the station address by setting the
write only register set. The station address in the PROM serves only to provide a "hint" about what the
station address should be.

EtherLink Adapter Technical Reference
11/26/88

Page 6

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

EtherLink Adapter Controller Register Map
Read Write

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

Receive Status
Transmit Status
GP Buffer Pointer [LSB]
GP Buffer Pointer [MSB]
RCV Buffer Pointer [LSB]
RCV Buffer Pointer [MSB]
Ethemet Address Prom Window

Auxiliary Status (CSR)
Buffer Window

Station Addr 0
Station Addr 1
Station Addr 2
Station Addr 3
Station Addr 4
Station Addr 5
Receive Command
Transmit Command
GP Buffer Pointer [LSB]
GP Buffer Pointer [MSB]
RCV Buffer Pointer Clear

Auxiliary Command (CSR)
Buffer Window

Transmit Command Register
7 i 6 ! 5 [4 i 3 1 2 !

~ , , l I # ~

I
I

!

~ 0

~ Detect Underflow
Detect Collision
Detect Collision 16
Detect Successful Transmission
Unused

A packet transmission can terminate for any of four different reasons: successful transmission,
collision, sixteenth successive collision without successful transmission, or undefflow. After each
collision, data remains in the packet buffer undisturbed, but software must reset GP and explicitly
restart the transmission. Once restarted, the adapter delays the appropriate amount of time before
actually retransmitting the packet. After the sixteenth consecutive collision further attempts to
retransmit should be abandoned on the assumption that the network is overloaded or has failed.

Underflow occurs only when transmitting packets with bad FCS, for diagnostic purposes, and should
not be seen during routine operation of the controller.

EtherLink Adapter Technical Reference
11/26/88

Page 7

!

I

Software may choose whether to ignore or detect any of the four conditions listed above. A one in the
corresponding bit position detects the condition; a zero ignores the condition. Detecting a condition is
not sufficient to generate an interrupt. Software must also have set Request Interrupt and DMA Enable
(RIDE) and/or Interrupt Request Enable (IRE, on ASSY 34-0780 only) for the EtherLink adapter to
generate interrupts.

The details concerning underflow and interrupts are contained in the description of the Auxiliary
Command Register below.

Transmit Status Register

~71 6 1 ' 4 ~ ~t 1 i 01
~ !

• _ ~ ~ ~ ~
~ : :,: !i -- Underflow
! ',i :~ Collision
! i " Collision 16
•

~ ~' Ready for New Frame
'" - - Undefined

The controller loads the Transmit Stares Register only after each transmission or attempted
uansmission. If interrupts are enabled for transmit, reading the status register clears the interrupt.

Receive Command Register

716 i - ; - I i - l

~ !,
Detect Overflow Errors
Detect FCS Errors
Detect Dribble Errors
Detect Short Frames
Detect Frames Without Overflow Error
End Of Frame (EOF) Detected
Accept Good Frames
Address Match Mode
0 - Receiver Disabled
1 - Receive all addresses
2 - Receive station address and broadcast
3 - Receive station address and multicast

Software can program the EtherLink adapter to detect only certain classes of packets (packets of
interest); all unwanted packets are discarded automatically. Discarded packets require no software
intervention. After a packet is discarded RP is reset and the controller is enabled to receive the next
packet of interest. The EtherLink adapter will generate interrupts on packets of interest only if RIDE
and/or IRE (ASSY 34-0780 only) is set.
EtherLink Adapter Technical Reference Page 8
11/26/88

I
I
I

The Address Match Mode controls which packets to accept by examining their destination addresses.
If the match mode is zero, the EtherLink adapter will not detect any packet; mode one accepts packets
regardless of the contents of their destination addresses. Modes two and three compare the destination
of each packet with the station address registers stored in adapter registers zero through five.

Other bits in the Receive Command Register allow software to further define packets of interest. The
EtherLink adapter only accepts (loads the buffer with) well formed packets (legal size, no FCS error
and no overflow). Setting Accept Good Frames def'mes good frames (legal size, no overflow and no
FCS error) as frames of interest. Dribble errors are allowed on good frames as long as there are no
other errors. Setting Detect Dribble Errors causes the EtherLink adapter to deteci: dribble errors, the
packet will be loaded into the buffer if it has no other errors.

All other bits are useful only to detect packets with errors. The controller will discard packets with
errors, however software can detect them in order to keep counts for diagnostic purposes. Short
frames are packets whose length is less than 60 bytes, excluding preamble and FCS; these are
probably collision fragments. FCS error means the four byte FCS computed on receipt did not match
the FCS in the packet. (Note that an Ethemet "alignment error" is equivalent to a packet with dribble
and FCS errors). Overflow errors happen when the controller detects a packet of interest while the
packet buffer is not available. The buffer may contain a previously received packet, or it may belong
to the system bus.

Table 1. Disc~rd/EOF Condition Troth Table

Frame Status Interesting Packet Discard EOF

Good Frame No
Yes

Overflow No
Yes

Short Frame (Runt) No
Yes

FCS Error No
Yes

Dribble Error No
Yes

Address Mismatch N/A

No Yes
No Yes
Yes No
Yes No
Yes Yes
Yes Yes
Yes Yes
Yes Yes
No Yes
No Yes
Yes No C¢~or ~3¢~: ~o ie_)

EtherLink Adapter Technical Reference
11/26/88

Page 9

!

I

I
I
I

Receive Status Recdster
i 7 ! 6 I 5 [4 j - 3 1 2 I 1 [0__ ~' I
I._~ !i

Overflow error
FCS error
Dribble Error
Short Frame
Received packet w/o Overflow error
Received good packet
Undefined
Stale Receive Status

Software def'mes packets of interest by setting the Receive Command Register. The controller changes
the status register after every packet detected on the network whether or not it was interesting. If the
controller detects an interesting packet, the Stale Receive Status goes to zero; once the Stale Receive
Status is zero the controller discards all packets until software reads the status register, this guarantees
that software reads the status associated with the detected packet. Reading the status register sets the
Stale Receive Status back to one; the EtherLink adapter can then detect the next interesting packet on
the network. However, if the controller is not in receive mode all interesting packets will cause
overflows. The Stale Receive Status bit will not go to one in this case unless overflow errors are set
as packets of interest. Reading the Receive Status Register clears any receive inteEupts.

Auxiliary Command Register
t 1 I i ' I

i

!

1 [0

i r a : ' ~

ASSY 0345: Undefined
ASSY 34-780: InteEupt Request
Enable (IRE)

. Transmit Packets with Bad FCS
Packet Buffer Control
0 - System bus has access to the buffer
1 - Transmit followed by receive
2- Receive
3 - Loopback

-Unused
DMA Request
Request Interrupt and DMA Enable (RIDE)
Reset

Writing the Reset bit to one resets all control and status registers in the EtherLink adapter. Software
must explicitly set this bit to zero after setting it to one. Leaving Reset on has the effect of perpetually
resetting the controller.

EtherLink Adapter Technical Reference
11/26/88

Page 10

The Request Interrupt and DMA Enable (RIDE) bit permits the EtherLink adapter to drive both the
Interrupt Request (IRQ) and DMA Service Request (DRQ) signals on the system bus. Jumpers on the
EtherLink adapter card select the DMA channel (either 1 or 3 on ASSY 0345, or 1, 2 or 3 on ASSY
34-0780) and interrupt channel (either 3 or 5 on ASSY 0345, or any one of 2 thru 7 on ASSY 34-
0780). When RIDE is zero, the EtherLink adapter cannot generate DMA transfers and can only
generate interrupts if IRE is one (IRE is available only on ASSY 34-0780). Bits in the wansmit and
receive command registers can be set to detect certain conditions; however, no interrupts can result
until RIDE or IRE is a one. RIDE and IRE may be set to one simultaneously. When RIDE, and IRE
on ASSY 34-0780, are zero, the interrupt and DMA channels selected are tri-stated per IBM
convention.

Software must manipulate RIDE, IRE and interrupts with care. When RIDE is zero the state of the
associated IRQ and DRQ lines on the system bus can be undefined. Leaving these lines in an
undefined state when their associated DMA and interrupt channels are active can result in strange and
unpredictable behavior. Software must insure that the associated IRQ and DRQ lines are not used by
other peripheral devices before setting RIDE or IRE to one. Neither setting of RIDE or IRE is safe
under all circumstances!

Setting DMA Request to one starts a DMA transfer. The EtherLink adapter interrupts at the
completion of the transfer. Setting DMA Request to zero, disables DMA Service request, clears DMA
Done, and clears the interrupt.

Bits 2 and 3 of the auxiliary command register control access to the packet buffer. If both bits are
zero, the buffer "belongs" to the system bus; software is free to read and write the buffer without
interference from the network. If either of the bits are not zero the packet buffer belongs to the
network.

If bit 3 is one, the controller will accept one packet from the network. The setting of the receive
command register causes the EtherLink adapter controller to receive and/or detect only "interesting
packets" all other packets will be discarded. Received packets are loaded into the packet buffer
starting at address '000H'. After a packet has been loaded into the packet buffer the size, in
bytes, excluding preamble and FCS, remains in RP.

If bit 2 goes to one, the controller transmits the packet buffer contents. The transmission starts at the
address left in GP by the software and ends when GP reaches '7FFH'. GP counts up.

If both bits 2 and 3 are one, the controller transmits the packet buffer and simultaneously receives the
packet from the network writing the packet back into the beginning packet buffer.

Setting bit I of the auxiliary command register to one causes the EtherLink adapter to transmit packets
with bad FCS. This bit is useful for testing the receive FCS circuitry.

EtherLink Adapter Technical Reference
11/26/88

Page 11

!

I

The low order bit (bit 0) of the Auxiliary Command Register is undefined on EtherLink adapters with
assembly number 0345. Software running on EtherLink adapters with assembly number 48-0747
may use this bit, Interrupt Request Enable (IRE), to enable interrupts on packets of interest only.
IRE permits the adapter to drive the Interrupt Request signal, IRQ. Jumpers on the adapter card select
the interrupt channel (either 3 or 5 on ASSY 0345, or any one of 2 thru 7 on ASSY 34-0780). If IRE
is off the EtherLink adapter can drive IRQ only if RIDE is on. Software which does not use DMA
should use IRE in place of RIDE. However the cautions described in relation to the RIDE bit and
interrupts must be observed.

Auxiliary Status Register

i ,7 16i5 14 13 t211 0j
Receive Busy
Transmit packets with bad FCS
Packet Buffer Control
DMA Done
DMA Request
Request Intenupt and DMA Enable
Transmit Busy

Software starts a DMA transfer by prograrnming the proper channel of the 8237A DMA controller on
the system board and setting RIDE, and DMA Request to one on the EtherLink adapter..When the
DMA transfer ends, DMA Done goes to one; software clears DMA Done by setting DMA Request to
z e r o .

Receive Busy goes to one whenever the controller is armed to receive a packet; this happens
automatically after transmitting a packet, or whenever software sets the Packet Buffer Conu~ol
to receive or loopback. Receive Busy goes to zero after the controller accepts a packet. Software
must wait 800 nanoseconds after receive busy goes to zero before reading the receive status register.

Transmit Busy is meaningful only when the packet buffer control is set for loopback or transmit;
while the packet buffer is switched to the bus or is in receive mode Transmit Busy will be set.
Transmit Busy remains at one when software starts a transmit by setting the Packet Buffer Control to
one. Transmit Busy goes to zero upon a collision or a successful transmission. Software can
distinguish between these two cases by examining the transmit status register. Transmit Busy is set to
one when software switches the packet buffer control to the system bus (by setting bits 2 and 3 of the
AUX COMMAND REG to zero).

EtherLink Adapter Technical Reference
11/26/88

Page 12

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

EtherLink Adapter Programming
To Transmit a Packet

1. Set the Packet Buffer Control to zero; this gives the system bus access to the buffer.

. Load the packet into the buffer so that the last byte of the packet coincides with the last byte of
the packet buffer. When GP equals 7FF hex it points to the last byte of the packet buffer.

3. Load GP so that it points to the first byte of the packet in the buffer.

4. Start the transmission by setting the Packet Buffer Control to one.

. Read the transmit status register to determine whether there was a collision or a successful
transmission. The transmission terminates when Transanit Busy goes to zero.

In case of collision, set the Packet Buffer Control to zero, reload GP, and set the Packet Buffer
Control to one; this rewansmits the packet. Again wait for Transmit Busy to go to zero; then read the
transmit status register to determine why the transmission terminated. Receiving packets requires
both one time initialization of the controller and manipulation of the EtherLink adapter for each packet
that arrives. The one time initialization includes reading the station address PROM, loading the
station address registers, and setting the receive command register. In the programming example the
routines "getaddr" and "setaddr", read the station address PROM and write the station address
registers respectively.

To Receive a Packet

. Clear RP and set the Packet Buffer Control to two; this initializes the receive pointer (RP) and
allows the controller to load the packet buffer from the network.

. 800 nanoseconds after Receive Busy goes to zero, the receive status register has the status of the
packet just received. The size of the packet, in bytes, is in RP. Software must set the Packet
Buffer Control to zero before reading the packet from the buffer.

The following code, written in C, initializes the controller, transmits a single packet of 1000 bytes,
and then receives well formed broadcast and packets addressed only to the station. The main
program is found at the end of the example. The routines "inb", "inw", "outb", and "outw" read and
write words and bytes on the IBM PC's I/O bus; the routine "inbs" reads a byte sign extended into a
word. All of the examples are polled I/O; no use is made of the interrupt circuitry.

EtherLink Adapter Technical Reference
11/26/88

Page 13

I

Transmit and Receive Code Example
In the following example, the EtherLink adapter is designated by its development code, IE4.

/* the various EtherLink adapter command registers */
#define IE4(num)(0x300+0xl0*num)
#define EDLC~DDR(num) (num)/* EDLC station address, 6 bytes */
#define EDLC RCV(num) ((num)+0x6)/* EDLC receive command and status */

- -

#define EDLC XMT(num)((num)+0x7)/* EDLC XMIT command and status */
- -

#define IE4_GP(num)((num)+0x8)/* transmit, station address PROM bp */
#define IE4~P(num) ((num)+0xa)/* receive buffer pointer */
#define IE4_SAPROM(num) ((ntun)+0xc)/* station address prom window*/"
#define IE4_CSR(num) ((num)+0xe)/* IE4 command and status */
#define IE4_BFR(num) ((num)+0xf)/* 1 byte window on packet buffer */

/* bits in EDLC_RCV, interrupt enable on write, status when read */
#define EDLC_NONE0x00/* match mode in bits 5-6, write only */
#define EDLC_ALL0x40/* promiscuous receive, write only */
#define EDLC_BROAD0x80/* station address plus broadcast */
#define EDLC~ULTI0xc0/* station address plus multicast */
#define EDLC_STALE0x80/* receive CSR status previously read */
#define EDLC_GOOD0x20/* well formed packetes only */
#define EDLC~NY0xI0/* any packet, even those with errors */
#define EDLC_SHORT0x08/* short frame */
#define EDLC DRIBBLE0x04/* dribble error */

- -

#define EDLC_FCS0x02/* CRC error */
#define EDLC_OVER0x01/* data overflow */

#define EDLC~ERROR(EDLC_SHORTIEDLC_DRIBBLEIEDLC_FCSIEDLC_OVER)
#define EDLC~MASK(EDLC_GOODIEDLC~NY~EDLC_RERROR)

/* bits in EDLC~MT, interrupt enable on write, status when read */
#define EDLC_IDLE0x08/* transmit idle */
#define EDLC_i60x04/* packet experienced 16 collisions */
#define EDLC_JAM0x02/* packet experienced a collision */
#define EDLC UNDER0x01/* data underflow */

- -

/* bits in IE4 CSR */
- -

#define IE4 RESET0x80/* reset the controller */
- -

#define IE4 RIDE0x40/* request interrupt/DMA enable */
#defineIE4 ~MA0x20/* DMA request */
#define IE~_EDMA0xi0/* DMA done */
#define IE4_LOOP0x0c/* 2 bit field in bits 2 and 3, loopback */
#define IE4 RCVEDLC0x08/* gives buffer to receive */
#defineIE4 ~MTEDLC0x04/* gives buffer to transmit */
#define IE~ SYSBFR0x00/* gives buffer to processor */
#define IE4SCRC0x02/* causes CRC error on transmit */
#define IE4_RCVBSY0x01/* receive in progress */

EtherLink Adapter Technical Reference
11/26/88

Page 14

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

/* miscellaneous sizes */
#define BFRSIZ0x800/* number of bytes in a buffer */
#define RUNT 60/* smallest legal size packet, no fcs */
#define GIANT 1514/* largest legal size packet, no fcs */

error(s) char *s; {printf("%s ", s) ;}

/* call DOS to test for keystroke, if its ^C get back to DOS */
sense_key() {char c;

if (dos(0xb)) {if ((c = dos(8)&0177)==3) exit(0); return(c);}
else return(0);}

/* low level transmit routines */
ie4reset(base) short base; {

outb(0xa, 5) ;/* turn off DMA channel 1 */
outb(0x21, 0xa0);/* mask interrupt level 5 */
outb(IE4_CSR(base), IE4~ESET) ;/* reset them */
outb(IE4 CSR(base), 0) ;
if (inb(~E4_CSR(base)) != 0x80) error("Can't reset IE4_CSR");
if ((inb(EDLC~MT(base))&0x0f) != 0)

error ("Can't clear EDLC XMT") ;
if ((inb (EDLC_RCV (base)) &0x9fT ! = EDLC_STALE)

error ("Can't reset EDLC_RCV") ; }

xmt start(base, size) short base; int size; {
- -

char c = inb(EDLC~MT(base));
outb(IE4 CSR(base), IE4 RIDE); /* make sure out of transmit mode */
outw(IE4--GP(base), BFRS~Z-size);/* before zapping counter */

- -

outb(EDLC~MT(base), EDLC_i61EDLC_JAMIEDLC~NDERIEDLC_IDLE);
outb(IE4_CSR(base), IE4_RIDEIIE4~MTEDLC);}
/* returns 0 for successful transmit

i timed out
2 collision
3 data underflow
4 idle not set after transmit
5 16 collisions */

EtherLink Adapter Technical Reference
11/26/88

Page 15

!

xmt wait(base, size, stall) short base; int stall, size; {
- -

int i; char c;
if ((inb(IE4_CSR(base))&IE4~MTEDLC) == 0)

error ("buffer not switched to transmit, xmt_wait") ;
i = stall;
do {

if (inbs(IE4_CSR(base)) < 0) continue;
c = inb (EDLC~MT (base)) ;
if (c&EDLC~NDER) return(3) ;/* underflow */
if (c&EDLC 16) return(5);/* 16 successive collisions? */

- -

if (c&EDLC_JA M) return(2);/* collision? */
if (inw(IE4_GP(base))==0x800) {
if (! (inb(EDLC~MT(base)) & EDLC_IDLE)) return(4) ;
return(0) ; } }

while (i-->=0) ;
return (i) ; }

retransmit(base, mode, size) short base, mode, size; {
int i = 0, org = BFRSIZ-size, k;
if ((inb(IE4_CSR(base))&IE4~MTEDLC) == 0)
error ("buffer not switched to transmit, retransmit") ;
while (inbs(IE4_CSR(base)) < 0)

if (++i > I000) {error("retransmit timed out"); break;}
outb(IE4_CSR(base), IE4_RIDE); /* make IE4 idle */
outw(IE4 GP(base), org) ;

- -

if ((inb (EDLC~MT (base)) & (EDLC_JAM~EDLC_I6)) == 0) return;
outb (IE4_CSR (base), IE4_RIDE I mode) ; }

/* returns 0 on failure, 1 on success */
xmt_done(base, size, stall) short base, size, stall; {

retry: switch(xmt_wait(base, size, stall)) {
case i: error ("Transmit timed out"); ie4reset(base) ;
case 0: return(1);
case 2 :

error ("Jam") ;
retransmit (base, IE4~MTEDLC, size) ;
sense_key () ;
goto retry;

case 3:error("underflow on transmit") ; ie4reset(base) ; break;
case 4:error("idle not set after xmt") ; ie4reset(base) ; break;
case 5:ie4reset(base);

error ("excessive collisions") ;
break;

default: error("xmt_done: bad argument") ; }
return(0) ; }

/* low level receive routines */

EtherLink Adapter Technical Reference
11/26/88

Page l6

I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

rcv start(base, mode) short base; char mode; {
- -

outb(EDLC_RCV(base), EDLC_NONE);
outb(IE4_CSR(base), IE4_RIDE);
outw(IE4~P(base), 0);
inb(EDLC_RCV(base));/* he'll discard until we read the status */
outb(IE4_CSR(base), IE4_RIDE~IE4_RCVEDLC);
outb(EDLC_RCV(base), modelEDLC_GOOD);}

rcv wait(base, stall) short base; int stall; {
- -

char status; int i = stall;
do {

if (inb(IE4 CSR(base))&IE4 RCVBSY) continue;
status = in~(EDLC_RCV(baseT)&(EDLC_STALE~EDLC_RMASK);
if ((status&(EDLC~NYIEDLC~ERROR)) != 0) return(status);}

while(i-->=0);
return(0);}/* timed out */

rcv_chk(status) char status; {
if (status&EDLC_FCS) error("FCS error");
if (status&EDLC_DRIBBLE) error("dribble error");
if (status&EDLC_OVER) error("overflow on receive");
if (status&EDLC_SHORT) error("size");}

rcv done(base, stall) short base; int stall; {
- -

char status;
if ((status = rcv_wait(base, stall)) == 0) return(0);
if (status < 0) {error("not fresh status"); return(-l);}
outb(IE4_CSR(base), IE4_RIDEIIE4_SYSBFR);/* give buffer to processor*/
outb(EDLC_RCV(base), EDLC_NONE);/* shut down the EDLC */
rcv chk(status);

- -

return(status&0xff);}/* guaranteed to be non-zero at this point */

getaddr(base, cp) short base; char *cp; {int i;
for(i=0; i<6; i++) {

outw(IE4 GP(base), i) ;
- -

*cp++ = inp (IE4_SAPROM (base)) ; } }

setaddr(base, cp) short base; char *cp; {int i;
for(i=0; i<=5; i++) outb(EDLC~DDR(base)+i, cp[i]); }

/* fill packet with constant pattern */
fill_pkt(base, size, pat) short base, size, pat; {

int i; char pathi = pat>>8;
/* Watch out! This routine knows that a short is two bytes. */
outb (IE4_CSR(base), IE4_RIDEI IE4_SYSBFR) ;
size= (size+l) & ~i;/* align packet on word boundary */
outw(IE4_GP(base), BFRSIZ-size) ;
for(i=size>>l; i>0; i--) {

outb(IE4 BFR(base), pat); outb(IE4_BFR(base), pathi) ; } }
EtherLink Adapter Techn~al Reference Page 17
11/26/88

!

xmt_pkt(base, size, stall) short base; int size, stall; {
xmt start(base, size); xmt done(base, size, stall);}

w - -

rcv__pkt (base, rcv_mode) {
int status, stallcon = 0x400;
rcv start (base, rcv_mode) ;
white ((status = rcv_done (base,
return (status) ; }

stallcon))==0) sense_key();

main() {
char myaddr[6]; int ie4 = IE4(0), size, i;

/* one time only initialization */
ie4reset(ie4); /* leaves buffer switched to system bus */
getaddr(ie4, myaddr); /* read station address from PROM */
setaddr(ie4, myaddr); /* set the station address */
printf("3Com IE4 Programming Example Version 1.0\\r\\n");
printf("My station address is ");
for (i=0; i<6; i++) printf("%02x ", myaddr[i]&0xff);
outb(EDLC_RCV(ie4), EDLC_ALLIEDLC_GOOD);

fill_pkt(ie4, i000, 0x5555); /* fill packet with constant pattern*/
xmt__pkt(ie4, 1000, 1000);/* transmit packet of 1000 bytes */
/* receive those packets */
printf("\\r\\nStart receive loopk\r\\n");
while (i)

if (rcv_pkt(ie4, EDLC_ALLIEDLC_GOOD) > 0) {
size = inw(IE4 RP(ie4));/* that's the size in bytes */
printf("%d ", ~ize);}

else ie4reset(ie4);}

Setting the Jumpers
The factory jumper settings on the EtherLink adapter work with software supplied by 3Com. Only
extraordinary circumstances or use with non-3Com software require alteration of the factory settings.

Jumpers are used on the EtherLink adapter to select the I/O configurations of the controller. Jumpers
on the adapter select the following:

• Interrupt channel used by the adapter.

• DMA channel used by the adapter. Two jumpers are required to select a DMA channel, DMA
Request (DRQ) and DMA Acknowledge (DACK). These jumpers must select the same channel.

• The base I/O address of the adapter.

EtherLink Adapter Technical Reference
11/26/88

Page 18

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

• The base memory address and enable for the available 4K by 8 onboard PROM.

Ethemet connector (which one of the two connectors on the backplate is attached to the Ethemet).
The EtherLink adapter may be attached to the network through either the BNC connector (silver
cylindrical connector) using the onboard transceiver or through the DIX connector (the 15 pin D-
connector) using a standard Ethemet transceiver.

The two versions of the EtherLink adapter have different degrees of selectability. Table 2 and Table 3
below describe the functions and factory settings for the jumpers on ASSY 0345 and ASSY 34-0780
respectively. The DIX/BNC jumper on ASSY 0345 is a shorting block which fits over 2 of 3 pins.
The DIX/BNC selection on ASSY 34-0780 is done using an eight position shorting plug which fits in
1 of 2 sixteen pin IC sockets.

NOTE: BE CAREFUL when changing the jumpers. If the jumpers are improperly installed, it is
possible to short together +5V and GND.

Table 2. Jumper Function and Factory Setting on ASSY 0345

Function Bus Signal Legend Factory Setting

DIX/BNC Select SW1 BNC

DMA Channel Select DRQ 1,3 JP1 DRQ 1
DACK 1,3 JP2 DACK 1

Interrupt IRQ 3,5 JP3 IRQ 3

I/O Base Address AD 09 1, not selectable
AD 08 JP4 1
AD 07 JP5 0
AD 06 JP6 0
AD 05 JP7 0
AD 04 JP8 0

PROM Base Address AD 19 1, not selectable
AD 18 JP9 1
AD 17 JP10 1
AD 16 0, not selectable
AD 15 1, not selectable
AD 14 JP11 1
AD 13 JP12 0
AD 12 JP13 0

PROM Enable
EtherLink Adapter Technical Reference
11/26/88

JP14
Page 19

Disabled

I

Table 3. Jumper Function and Factory Settings on ASSY 34-0780

NOTE: BE CAREFUL when changing the jumpers. If the jumpers are improperly installed, the
adapter will malfunction.

Function Bus Signal Legend Factory Setting

DIX/BNC Select BNC or DIX BNC

DMA CHANNEL Select DRQ 1,2,3 REQ 1,2,3 DMA 1
DACK 1,2,3 ACK 1,2,3 DMA 1

Interrupt

I/O Base Address

m Q 2-7 2-7 INT 3

AD09 9 1
AD 08 8 1
AD07 7 0
AD06 6 0
AD05 5 0
AD04 4 0

PROM Base Address AD 19 19
AD 18 18 1
AD 17 17 1
AD 16 16 0
AD 15 15 1
AD 14 14 1
AD 13 13 0
AD 12 12 0

PROM Enable Enable/Disable Disable

Ethernet Interface
The EtherLink adapter provides two options for connection to an Ethemet, selectable by a jumper. The
first is the standard, DA-15 DIX outlet, which uses fully compatible signalling. This outlet attaches to
a standard transceiver cable, which in turn is connected to any Ethemet transceiver for use with
standard "thick" Ethernet cable.

EtherLink Adapter Technical Reference
11/26/88

Page 20

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The other Ethemet interface uses the onboard transceiver and is designed to be used with, "thin", low-
cost (50 ohm) RG-58A/U coax as the Ethemet media. The integral transceiver is attached to the cable
via a single BNC connector on the box, to be mated with a BNC "T" pre-installed on the RG-58 coax.
The station can be coupled and uncoupled without affecting network operation. The integral
transceiver provides complete electrical isolation. The RG-58 Ethernet is electrically compatible with
standard Ethemet coax. In fact, the RG-58 Ethernet can be attached to standard Ethernet by simply
coupling them with an N-series/BNC adapter, and EtherLink adapters can communicate with any other
station on the RG-58 or yellow coax. One drawback of the RG-58 Ethernet is that the distance
limitation is more severe: approximately 300 meters of an RG-58-only segment.

Known Bugs Found on Early Production Boards
Receiving a runt packet can lock up the controller while in receive mode regardless of the setting of
Detect Short Frames, bit three of the Receive Command Register. Reading the Receive Status Register
after reception of a runt permits reception of further packets. This is not a problem for software using
polled I/O; such software can read the Receive Status Register in the same loop that checks the
Auxiliary Status register for Receive Busy. Interrupt driven software must set Detect Short Frames to
insure that runts generate interrupts; interrupt level software can then read the status register in order to
receive subsequent packets.

It is possible to get one false interrupt for each write to the Receive or Transmit Command Register.
Software can distinguish false interrupts from true ones by examining Receive Busy and Transmit
Busy, bits zero and seven respectively of the Auxiliary Status Register. Well written software would
routinely check for these conditions before taking action to disturb the state of the controller.
However, software running at main program level cannot prevent false interrupts this way because an
interrupt would occur before main program level could read the status register. Interrupt level would
then be responsible for clearing the interrupt by reading the status registers.

EtherLink Adapter Technical Reference
11/26/88

Page 21

